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synopsis 
A simplified procedure is presented to estimate the two adjustable parameters in a log- 

normal distribution function. From values of these parameters, the weight distribution 
function, V(M), as well as various molecular weight averages can be calculated. The 
method was applied to fractionation data selected a t  random for several polymers. The 
agreement between calculated and reported values appears to be good. 

INTRODUCTION 

Although the estimation of molecular weights from polymer fractionation 
data often involves discrete functions (summation methods), polymer 
molecular weights may also be estimated employing continuous functions. 
A decided advantage of continuous over discrete functions is that once 
certain parameters have been calculated, a differential molecular weight 
distribution (MWD) curve may readily be constructed, however, a chief 
disadvantage of continuous over discrete functions is that the calculation of 
parameters is often difficult if not tedious. Thus, consider several MWD 
functions which have been proposed; some were theoretically derived, 
whereas others were devised empirically to fit the experimental data. 

One MWD function was derived by Schulz’ for chain coupling vinyl 
polymerization, 

Mb + l a M  
(-In a)b+2 

W ( M )  = 
(b + 

where W(M) denotes a differential distribution function, 2cI is molecular 
weight, and a and b are parameters. A method of estimating parameters a 
and b in eq. (1) was given by Boyer.2 He selected appropriate values of a 
and b and numerically calculated the integral distribution function [I(M) = 
. f”W(M)dM].  Graphs were then constructed for various sets of values of 
a and b. The abscissa involved degree of polymerization rather than 
molecular weight M ,  while the ordinate involved some probability function 
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of I(M) which was devised so that a linear relationship would be obtained 
for a particular set of values of a and b. 

A second MWD function involves an empirical relation used by TungS.4 

W(M)  = yz MZ-' exp (-yMz) (2) 

where y and z are parameters. 
to yield the integral distribution form, 

Equation (2) can be integrated analytically 

I(M) = 1 - exp (-yJP). (24 

From eq. (3), a double log plot may be constructed4 to afford values of y and 
z. Then values of weight-average and number-average molecular weights 
may be calculated (as well as W ( M ) )  from the expressions 

nW = 9-1'2 r(i + 1/21 

M,, = [p r ( i  - 1/~)]-1 

(2b) 

(2c) 

However, z-values are often less than unity so that iVn in eq. (2c) possesses 
a physically unrealistic negative value. 

Another often used MWD function is the log-normal di~tribution,~*5 

where 0 and Mo are adjustable parameters. For polymers conforming to 
eq. (3), it has been shown6 that a plot of I(M) versus M on log-probability 
graph paper will yield a straight line. The parameters p and Mo can then be 
estimated from the slope and position of the straight line. Subsequently, 
molecular weights can be calculated from the expressions 

a, = Mo exp (B2/4) 

Mn = M o  exp (-p2/4) 

M, = Mo exp (aB2/4) 

(3a) 

(3b) 

(34 

where ATg is viscosity-average molecular weight and a is the exponent in the 
Mark-Houwink equation. 

From the preceding, it can be seen that in eqs. (1) and (3), values of the 
adjustable parameters may be estimated.after rather tedious and specialized 
plots are constructed. While parameters in eq. (2) may be readily obtained 
by a double log plot, values obtained for M,, are often unrealistic. The 
purpose of this paper is to demonstrate that a rather simple plot involving 
eq. (3) may be made which will readily afford values of /3 and MO and conse- 
quently values of ATn and Mo. These latter values were obtained from such 
simple plots to be described and were compared with corresponding values 
reported. Fractionation data for various polymers were selected at random 
from the literature. 
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RESULTS AND DISCUSSION 

If me substitute the expression for W ( M )  in eq. (3) in the expression for 
I(M), there is obtained 

(4) 

I(M) = erf(u) (5) 

Further, letting u = (42//3) In M / M o ,  eq. (4) becomes 

where erf denotes error function and erf(u) = ( 1 4 g ) p ! ,  e-u*’2 du. 
Values of srf(u) for various values of u have been tabulated.’ From such 
tabulated values, theoretical plots of I”(M) versus u were constructed for 
n = 1/2, 1, and 3 (cf. Fig. 1). From least-squares treatment, the following 
was obtained (r denotes linear correlation coefficient) : 

I”’(M) = 0.2897~ + 0.6960 

I’(M) = 0.3504~ + 0.5OoO 

13(M) = 0.4544~ + 0.1175 

(6) 

(7) 

(8) 

(r = 0.9992, -1.8 5 u 5 0.63) 

(r = 0.9985, -1.13 5 u 5 1.13) 

(T = 0.9969, -0.13 < u 5 1.8) 
The limits for u over which eqs. (6)-(8) are valid are listed after these equa- 
tions as well as in Figure l. From eqs. (6)-(8), plots of I”(M) versus In M 
should yield linear relationships (between the appropriate limits of u) whose 
slopes will afford values of /3 and whose intercepts, values of Mo. Thus, for 
example, eq. (7) may be expanded to give 

I1(M) = K In M + 0.5000 - K In Mo (74  

TABLE I 
Summary of Results from Simplified Log-Normal Equations (6)-(8) 

Polymer 

PE 
PIB 
PVCl/PVAc 
PVAc 
PSt#666 
PSt#69 
PPra 
PIBMb 

iiZw x 10-4 a,, x 10-4 a,, x 10-4 

Calcd Reptd Calcd Reptd 

8.38 8.40 
5.73 4.85O 
4.61 - 

19.1 18.1 
29.1 25.0 
55.8 - 
- - 
8.83 8.24 

1.10 1.03 
2.25 1 .99  
3.09 2.80 

13.6 11.3 
12.7 12.0 
55.6 - 

5.72 5.19 

Calcd Reptd 

4.38 4 . 1  
18.0 17.1 

55.8 55.8 
15.7 16.5 

- - 

Ref. 

3 
8 
9 

10 
11 
11 
12 
13 

a Fractionation utilizing coacervate extraction. 

a These values were calculated by the authors using summation methods. 
and -4, values given (angstrom-size averages). 
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Fig. 1. Theoretical plots of In(M) vs. u for values of n = I/*, 1, and 3. 

where K = 0.35041/2/8. Thus, a plot of I1(M) versus In M will provide a 
linear relation whose slope is equal to K and whose intercept is equal to 
0.5OoO - K In Mo. Thus, j3 and Mo can be obtained readily as well as 
values of u for corresponding values of M. Equations (6) and (8) may be 
treated similarly. In Figure 2 are shown plots of I"(M) (n = 1 and 3) 
versus In M for polyethylene (PE).3 For a least-squares treatment, the 
I1(M) and 13(M) plots gave the following values: 8 = 2.02 f 0.02, f l w  = 
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In M 
Plot of In(M) vs. In M for polyethylene (PE) for values of n = 1 and 3. 

(8.38 f 0.07) X lo4, and B* = (1.10 f 0.05) X 10'. These and reported 
values are in good agreement (cf. Table I). The advantage of employing 
more than an I1(M) plot is that an P ( M )  plot may involve data (within the 
proper limits of u) that were not utilized in the I1(M) plot. When an 
I1(M) plot employs a large percentage of the fractionation data, it is obvi- 
ously not necessary to employ other I"(M) plots. In Figures 3 and 4 are 
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Fig. 3. Plot of IQf) vs. In M for polyisobutylene (PIB), poly(viny1 chloride)-poly(viny1 
acetate) copolymer (PVC1-PVAc), poly(viny1 acetate) (PVAc), and polystyrene (PSt). 

depicted plots of I'(M) versus In M for various polymers. Thus, polyiso- 
butylene* (PIB), poly(viny1 chloride)-poly (vinyl acetate) copolymers 
(PVCI/PVAc), poly(viny1 acetate) lo (PVAc), polystyrene" (PSt), poly- 
propylene'* (PPr), and poly(isobuty1 methacrylate)la (PIBM) are listed in 
the figures. In all cases, least-squares treatment was utilized to estimate 
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Fig. 4. Plot of Il(M) vs. In M or In A for polypropylene (PPr), poly(isobuty1 meth- 
acrylate) (PIBM) and polystyrene (PSt). 

the values given in Table I. I n  obtaining the values in Table I, I(M) was 
assumed to be equal to the S c h ~ l z ' ~  cumulative weight function C ( M ) ,  
where, C ( M )  = wt/2 + ZjZ: wj and w = weight fract.ion. From this table, 
it can be seen that the agreement between calculated and reported values is 
g00d.l~ Thus, the average deviations are: for ATwl +8%; for ATn +lo%; 
and for M,, *4%. From the preceding, the simplified method for esti- 
mating /3 and Mo (and consequently awl Mn, and M,) can be employed to 
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give, in a relatively facile manner, fairly reliable estimates of various 
molecular weight averages. Of course, the differential weight distribution 
function, W ( M ) ,  may also be calculated. 
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